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Abstract A key issue in kinetic analysis is the ‘‘predic-

tion’’ of the evolution of a solid state transformation for a

particular temperature program. Many methods have been

proposed to calculate this evolution from kinetic parame-

ters determined from non-isothermal isoconversional

methods. In this study, we will review and compare the

most accurate methods. We will then introduce a new

method that provides an accurate prediction for an arbitrary

temperature program.
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Introduction

Kinetic methods are routinely employed to determine the

kinetic parameters of solid-state transformations from

thermal analysis experiments. In particular, there are iso-

conversional methods which are model-free, i.e., they

allow the activation energies to be determined indepen-

dently of the particular mechanism governing the trans-

formation. Isoconversional methods rely on data obtained

from experiments performed at different constant

temperatures (isothermal) or different heating rates (non-

isothermal). There is a common agreement that isocon-

versional methods are among the most reliable kinetic

methods [1–8]. Apart from the conclusions that can be

drawn from the mechanisms involved in solid-state trans-

formations, kinetic methods are especially suitable for

predicting the evolution of the transformation when the

sample is submitted to a particular temperature program

[9–11]. These predictions are useful for industrial purposes

[7, 12] and for designing more efficient thermal treatments.

This article is the last of a series of the three devoted to

reviewing isoconversional methods. In the first article [13],

we analyzed the accuracy of isoconversional methods,

whereas in the second article [14], we studied their appli-

cation in complex transformations. The present article is

devoted to reviewing the most common and accurate

methods that predict the evolution of a solid-state trans-

formation from the kinetic parameters obtained from non-

isothermal isoconversional methods, i.e., ‘‘model-free’’

prediction methods. To this purpose, we will apply them to

experimental and numerical data. Moreover, we will

introduce a new method which is exact within the validity

of the isoconversional principle. This method can predict

the evolution of the transformation when submitted to an

arbitrary temperature program.

Isoconversional principle

Isoconversional methods are based on the assumption that

the rate of change in the state is a function of the state itself

and the temperature, and that the system state is described

by a single parameter: the degree of transformation, a
(0 B a B 1). Accordingly, the transformation rate is given

by:
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da
dt
¼ kðTÞf ðaÞ; ð1Þ

where k(T) is the rate constant and f(a) is the conversion

function which is related to the reaction mechanism

[15–17]. Equation 1 is known as the single-step kinetic

equation. In general, in solid-state transformations, the rate

constant, k(T), is adopted from the Arrhenius law

[3, 4]:

kðTÞ ¼ Ae�E=RT ; ð2Þ

where A is the pre-exponential factor, E is the activation

energy, and R is the gas constant.

For experiments performed at a constant heating rate,

Eq. 1 can be integrated:

gðaÞ �
Za

0

du

f ðuÞ ¼
EA

bR
p

E

RT

� �
; ð3Þ

where b : dT/dt = constant, which is the heating rate,

and pðxÞ �
R1

x
expð�uÞ

u2 du; which is the temperature integral

[18] (in Ref. [13] we provide some numerical recipes for

calculating the temperature integral).

Conventional isoconversional methods are known as

integral methods because they are based on the integration

of Eq. 1. Indeed, most integral methods are based on Eq. 3.

In the derivation of all the integral methods [5], it is

assumed that E is independent of a. This assumption is in

contrast with the dependence of E on a (Ea) observed in

many practical situations. The integration assuming a

constant value of Ea, smoothes the dependence of Ea on a,

i.e., integral methods fail to deliver the correct evolution of

Ea [2, 3, 19]. To account for this dependence, differential

and advanced isoconversional methods rely on the more

general hypothesis (isoconversional principle) that, at a

given degree of transformation, the transformation rate is

also a function of a [19],

d lnðda=dtÞ
dT�1

� �
a

¼ �Ea

R
: ð4Þ

Integration of Eq. 4 results in single-step transformations

where both the activation energy, Ea, and pre-exponential

factor, Aa, depend on the degree of transformation,

da
dt
¼ Aa exp � Ea

RT

� �
f ðaÞ: ð5Þ

Moreover, and in contrast to integral methods,

differential and many other advanced methods can be

applied to non-constant heating rate experiments [19] and

non-Arrhenius temperature dependence of the rate constant

[20, 21].

Isothermal and non-isothermal predictions

Model-free predictions are calculated using kinetic

parameters obtained from non-isothermal isoconversional

analysis, i.e., experiments carried at different heating rates

bi. Non-isothermal experiments are preferred [3] because

they are more easily and more rapidly performed, and they

allow a wider temperature range to be explored [22]. Iso-

conversional methods rely on the determination of the

temperature, Ta,i, at which a degree of transformation, a, is

reached while heating at a constant rate, bi (some methods

also require the determination of the transformation rate

(da/dt)a,i) [23, 24]. The result of the isoconversional anal-

ysis is N discrete data sets, aj and Ej, where Ej is the

activation energy at a given degree of transformation, aj.

The step employed in the discretization of a is Da = aj -

aj-1 = 1/(N - 1). In addition, integral methods provide

g(aj) whereas differential and advanced methods deliver

Aajf(aj) (advanced methods deliver
Aaj

Dgaj
� Aaj

gðajÞ�gðaj�1Þ �
Aaj

f ðajÞ
Da ) [13].

Vyazovkin [25] has developed a method for isothermal

predictions based on Eq. 3 which is exact for single-step

transformations with constant activation energy. The time,

tj needed to reach a degree of transformation, aj at a con-

stant temperature, Tiso is given by,

tj ¼ bi exp � Ej

RTiso

� �� ��1ZTj;i

0

exp � Ej

RT

� �
dT

¼ Ej

Rbi

p Ej= RTj;i

� �� �
exp �Ej= RTisoð Þ
� � ; ð6Þ

where Tj,i is the temperature at which aj is reached while

heating at a constant rate, bi. An advantage of this method

is that the pre-exponential factor Aa, which improves

accuracy and robustness, is not used [3]. Since Eq. 6 is

obtained when assuming constant activation energy, the

most suitable isoconversional method for determining Ej is

an integral method.

Vyazovkin’s method assumes that Ej is independent of a
in the whole integration interval. As a consequence, in the

case of complex transformations, one should expect devi-

ations from the actual behavior [26]. Vyazovkin [27] par-

tially solved this problem by taking into account the

dependence of Ea on a during the non-isothermal

measurement:

tj ¼ exp � Ej

RTiso

� �� ��1XN

k¼1

Ztk

tk�1

exp � Ek

RTðtÞ

� �
dt: ð7Þ

However, this method neglects the dependence of Ea on

a during the isothermal transformation. This is probably the
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reason why Eq. 7 does not lead to more accurate

predictions than Eq. 6 in the case of complex

transformations [26]. We have overcome this limitation

by taking into account the dependence of Ea on a during

the isothermal transformation:

tj ¼ tj�1 þ
Ej

Rbi

p Ej= RTj;i

� �� �
� p Ej= RTj�1;i

� �� �
exp �Ej= RTisoð Þ
� � : ð8Þ

Equation 8 is exact within the framework of the isocon-

versional hypothesis, Eq. 4.

The methods presented above are restricted to isother-

mal predictions. However, it is of practical interest to be

able to predict the evolution of the transformation for an

arbitrary temperature program to work with more realistic

conditions and to be able to design more complex heat

treatments. Our method can be modified to work for an

arbitrary temperature program T(t):

tj ¼ tj�1 þ
Ej

Rbi

p
Ej

RTj;i

� �
� p

Ej

RTj�1;i

� �� �

Ztj�1

tj�1

exp � Ej

RTðtÞ

� �
dt

2
64

3
75
�1

: ð9Þ

Equations 8 and 9 are exact within the isoconversional

hypothesis, so the more appropriate choice to determine Ej

is a differential or advanced isoconversional method.

Roduit et al. [12] have also developed an exact iso-

thermal method which is based directly on Eq. 5:

tj ¼ tj�1 þ
Zaj

aj�1

da

Af ðaÞ½ �jexp �Ej= RTisoð Þ
� � dT ; ð10Þ

where [Af(a)]j is Aaf(a) for a = aj. To apply this method, a

differential or advanced isoconversional method is required to

determine [Af(a)]j. The method of Roruit et al. can be easily

adapted to work with an arbitrary program by time

discretization, Dt, of the temperature program T(t). At

each time step, aðt þ DtÞ ¼ aðtÞ þ da=dtjaðtÞDt; and the

transformation rate can be easily determined from Eq. 5

using the parameters obtained from the isoconversional

analysis, e.g., using an interpolation algorithm [28] to

determine the particular values of Aaf(a) and Ea at a given a(t):

aðt þ DtÞ ¼ aðtÞ þ Aaf ðaÞ exp � Ea

RTðtÞ

� �
Dt: ð11Þ

In fact, Eq. 11 comes directly from the isoconversional

hypothesis; the transformation rate is a function of a. Iso-

conversional methods allow us to determine the transfor-

mation rate at a given a, Eq. 5. Therefore, the evolution of

the transformation is obtained directly from the time inte-

gration of the transformation rate.

It is noted that Eq. 11 calculates a(t) where time t fol-

lows the temperature program discretization, whereas Eq. 9

gives the time required to reach a transformation degree aj,

i.e., it follows the discretization employed in the isocon-

versional analysis.

To check the accuracy of the methods described above,

we have applied them to three different data sets: a

numerically simulated data set from various single-step

transformations with constant Ea; two numerically simu-

lated data sets from complex transformations; and experi-

mental data. The use of numerically simulated data set is

justified by the need to separate the effect of experimental

noise and experimental artifacts from the inconsistencies

related to inaccuracies or assumptions in the method.

Numerical data: single step transformations

with constant activation energy

The models analyzed in this article are summarized in

Table 2 of Ref. [13] and cover most of the common kinetic

models. The details of the numerical calculations and iso-

conversional analyses are given in Ref. [13]. We have

evaluated Ea for N = 1000 equidistant values of a
(Da = 1/999). To determine the kinetic parameters, we

have employed the Friedman method [29].

As expected, Vyazovkin’s methods, Eqs. 6 and 7, and

our method, Eq. 8, deliver identical isothermal predictions

since they are all exact and equivalent for single-step

transformations with constant activation energy. Moreover,

the agreement between the isothermal predictions and the

Fig. 1 Solid line: Numerical evolution of the transformed fraction for

a first-order transformation (f(a) = 1- a) and constant temperature

(250 �C). Parameters: E = 250 kJ mol-1, A = 1022 s-1. Symbols:

isothermal predictions (for the sake of clarity only one out of every 13

points is plotted). Inset: Determination of the Aaf(a) parameter from

Friedman’s isoconversional analysis
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calculated evolution is excellent, as shown in Figs. 1 and 2

(discrepancies in the value of a are of the order of 10-12 or

less). More examples are given in the Electronic supple-

mentary material.

The same agreement is obtained with Eq. 10, for the first-

order reaction model (see Fig. 1). Conversely, in the case of

the Kolmogorov–Johnson–Mehl–Avrami model, KJMA,

there is a time shift between the actual evolution and the

prediction (see Fig. 2). This result is unexpected because the

method of Roduit et al. is also an exact method. In fact, the

method of Roduit et al. provides an accurate prediction for

all the models analyzed except for the KJMA model.

Broadly speaking, reaction models can be classified into two

groups: ‘‘deceleratory’’ models, in which the highest iso-

thermal transformation rate occurs at the beginning of the

reaction; and ‘‘acceleratory or sigmoid’’ models, in which

the highest isothermal rate occurs at an intermediate stage of

transformation [30]. The KJMA model belongs to the sec-

ond group, while the other reaction models analyzed belong

to the first group. This difference in behavior corresponding

to a different evolution of the function, f(a); in the decele-

ratory models, f(a) is a monotonic decreasing function while

for the KJMA model, f(a) vanishes at the beginning and at

the end of the transformation, a = 0 and 1, and has a max-

imum somewhere in between. As a consequence, the

parameter Aaf ðaÞja¼0 vanishes in the KJMA model while it

remains positive in the other models (see inset in Figs. 1, 2).

Roduit’s method is based on the determination of Aaf(a),

thus, in the first stages—and using the KJMA model—the

prediction is very sensitive to inaccuracies in the determi-

nation of Aaf(a) (Aaf(a) is determined from the intercept of

Friedman plot, and is very sensitive to inaccuracies).

Moreover, for constant heating rate experiments,

the transformation rate vanishes at the beginning of the

transformation, which means that inaccuracies in the

determination of kinetic parameters grow when a ? 0. In

fact, non-isothermal isoconversional methods fail to deliver

Aaf(a) and Ea when a = 0. It is noted that despite the fact

that we are analyzing precise numerical data, even very

small uncertainties in the determination of Aaf(a) when

a ? 0 will result in a significant error in the first stages of

the isothermal predictions. Equation 10 gives the time

interval related to Da, therefore, the error in the calculation

of time in the first stages yields a time shift for the whole

prediction (see Fig. 2). Hence, Eqs. 10 and 11 are sensitive

to the inaccuracies in the determination of Aaf(a) at the first

stages of the transformation and fail to give an exact pre-

diction for sigmoid reactions. To minimize this effect, we

have extrapolated the value of Aaf(a) for a = 0. This pro-

cedure has been applied to the prediction plotted in Fig. 2.

We have observed a significant reduction of the time shift.

However, deviations are still noticeable as can be seen from

Fig. 2. Moreover, when dealing with experimental data, it is

crucial to have a proper construction of the baseline to

minimize the error in the determination of the kinetic

parameters in the first stages of the transformation [7, 12,

31].

Numerical data: parallel reactions

One numerical model that can be employed to analyze

complex kinetics involves the overlapping of two parallel

reactions [2, 26]. Specifically, we have analyzed two

equally weighted first order reactions:

dai

dt
¼ Ai exp � Ei

RT

� �
ð1� aiÞ; i ¼ 1; 2 and

a ¼ 1

2
ða1 þ a2Þ; ð12Þ

where E1 = 80 kJ mol-1, A1 = 1010 min-1, E2 = 120 kJ

mol-1, and A2 = 1015 min-1. To calculate the evolution of

the transformed fraction, we have used a fifth-order Run-

ge–Kutta method with adaptive step-size control [28] (the

absolute and relative tolerances have been set to 10-12).

The simulations were carried out for seven different heat-

ing rates: b = 0.5, 1, 2.5, 5, 10, 20, and 40 K min-1. The

results are plotted in Fig. 3.

Vyazovkin stated that in the case of parallel reactions,

the effective activation energy depends on both the tem-

perature and the degree of transformation [8, 11]. Owing to

this dependence on temperature, the isoconversional

hypothesis is an approximation. To check the goodness of

this hypothesis, we have calculated the evolution of the

Fig. 2 Solid line: Numerical evolution of the transformed fraction for

a KJMA transformation f ðaÞ ¼ nð1� aÞ � lnð1� aÞ½ �n� 1=n
� 	

with

n = 4 and constant temperature (250 �C). Parameters: E = 200 kJ

mol-1, A = 1016 s-1. Symbols: Isothermal predictions (for the sake of

clarity only one out of every 13 points is plotted). Inset: determination

of the Aaf(a) parameter from Friedman’s isoconversional analysis

186 J. Farjas, P. Roura

123



transformation using the non-isothermal prediction meth-

ods described previously in the Eqs. 9 and 11. In particular,

we have assumed linear variations of the temperature, i.e.,

we have used the same temperature program as in the

numerical calculations. The results are plotted as symbols

in Fig. 3. Figure 3a shows a good agreement between the

non-isothermal predictions and the actual evolution.

However, small deviations of the predictions are apparent

with the transformation rate curves in Fig. 3b. Thus,

although the isoconversional hypothesis is not exact, it is

very accurate. In addition, we have found that the predic-

tions yielded by Eqs. 9 and 11 are virtually identical. It is

as we expected because they are both exact methods within

the isoconversional hypothesis, and in contrast with the

models in the previous section, this reaction model is based

on two parallel first order reactions, therefore, the term

Aaf(a) does not vanish when a ? 0. As a consequence, no

time shift is expected when applying the method of Roduit

et al. (Eq. 11).

In Fig. 4, we have plotted the isothermal prediction

delivered by different methods. We applied Friedman’s

method [29] to obtain the kinetic data used for the predic-

tions of Eqs. 8 and 10, whereas Vyazovkin’s integral

method [32–34]) was applied to obtain them for the pre-

diction of Eqs. 6 and 71 (the details of the numerical meth-

ods used in the isoconversional analyses are given in Ref.

[13]). With the exception of Eq. 7, all methods provide an

accurate prediction. Surprisingly, the best prediction is

obtained from the approximate method of Eq. 6. However,

this trend is not systematic and varies depending on the

particular temperature analyzed (for more examples, see the

Electronic supplementary material). In any case, this par-

ticular result shows that, for this complex transformation,

the deviations of the actual transformation with respect to

the isoconversional hypothesis are more relevant than the

inaccuracies within the isoconversional hypothesis. Equa-

tion 7, on the other hand, is inferred by assuming a constant

activation energy for the isothermal transformation and a

non-constant activation energy for the non-isothermal

transformation. As evidenced in Fig. 4, this inconsistency

may result in very large inaccuracies. Therefore, in the fol-

lowing section, we will avoid using this method.

Numerical data: crystallization with mixed nucleation

mechanisms

In this section, we will analyze a solid-state transformation

whose complex nature emerges from its inhomogeneous

Fig. 4 Solid line: Evolution of the transformed fraction for the

numerical simulation of a parallel reaction, Eq. 12, when it occurs at a

constant temperature of 80 �C. Symbols: Isothermal predictions (for

the sake of clarity only one out of every 10 points is plotted)
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Fig. 3 Solid line: Evolution of the transformed fraction (a) and the

transformation rate (b) for the numerical simulation of a parallel

reaction, Eq. 12, when it is heated at several heating rates, b.

Symbols: Non-isothermal predictions (for the sake of clarity only one

out of every 50 points is plotted)

1 Like Sbirrazzuoli et al. [26], we have not observed significant

differences when using the integral method in place of the differential

or advanced methods and vice versa.
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nature, i.e., crystallization driven by a mixture of nucle-

ation mechanisms (homogeneous nucleation plus pre-

existing nuclei). In this case, the assumption of the

isoconversional hypothesis is also an approximation.

The crystallization of amorphous silicon is usually

controlled by homogeneous nucleation [35, 36]. However,

the nucleation mechanism can be modified by introducing

pre-existing nuclei [37, 38]. Furthermore, nucleation by

both mechanisms has been observed in the crystallization

of metallic glasses [39]. In the case of mixed nucleation,

the kinetics cannot be described as a single-step transfor-

mation [14, 40].

Solid-phase crystallization is generally described by the

KJMA theory [41–45]. We have used the numerical recipe

described in Ref. [46] to calculate the evolution of the

transformed fraction. Experiments show that nucleation

and growth rates obey an Arrhenius temperature depen-

dence [35, 47]. For the numerical calculation, we have

chosen the parameters determined experimentally for the

crystallization of amorphous silicon (Table 1). In addition,

we have assumed an initial nuclei density of 2 lm-3 which

corresponds to a similar contribution from both nucleation

mechanisms. The simulations have been run for eight dif-

ferent heating rates: b = 0.5, 1, 2.5, 5, 10, 20, 40, and

80 K min-1. The results are plotted in Fig. 5.

As in the previous case, there is a good agreement

between the non-isothermal predictions and the actual

evolution. However, in contrast to the previous case, the

predictions obtained from Eqs. 9 and 11 do not match. This

is because, in this case, the term Aaf(a) does vanish when

a ? 0. Therefore, a time shift is expected for the predic-

tion given by Eq. 11. In any case, discrepancies between

both the methods are very small and it is difficult to state

which method delivers the more accurate prediction.

Therefore, in this case, the intrinsic inaccuracy of the

method of Roduit et al. is insignificant—a conclusion that

is confirmed by the isothermal prediction (see Fig. 6),

where one can observe small differences between the

method of Roduit et al. and the other methods. Moreover,

as in the previous example, there is a nearly perfect match

between Eq. 6, which is approximate, and Eq. 8 which is

exact. This result confirms that, for complex transforma-

tions, the approximations employed in the derivation of the

methods from the isoconversional hypothesis are of little

importance.

Table 1 Experimental parameters of amorphous silicon nucleation

and growth rates [35]

Nucleation Activation energy 511 kJ/mol

Pre-exponential term 1.7 9 1044/s/m3

Growth Activation energy 299 kJ/mol

Pre-exponential term 2.1 9 107 m/s

007006
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Eq. 10, Roduit et al.

Eq. 10, Roduit et al.

Fig. 5 Solid line: Evolution of the transformed fraction (a) and the

transformation rate (b) for the numerical simulation of the crystal-

lization of amorphous silicon when it is heated at several heating

rates, b. Symbols: Non-isothermal predictions (for the sake of clarity

only one out of every 20 points is plotted)

Fig. 6 Solid line: Evolution of the transformed fraction for the

numerical simulation of the crystallization of amorphous silicon when

it is held at a constant temperature of 650 �C. Symbols: Isothermal

predictions (for the sake of clarity only one out of every 18 points is

plotted)
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Experimental data: thermal decomposition of CaCO3

Last but not the least, we will analyze a real case: the

thermogravimetric (TG) curves of the thermal decompo-

sition of CaCO3. The experiments were carried out in a

Mettler Toledo thermogravimetric analyzer (TGA851LF

model). The samples were placed in open alumina cruci-

bles. A flow of 300 mL min-1 of high purity nitrogen was

kept constant inside the furnace [48]. We performed seven

different measurements at heating rates ranging from 0.5 to

40 K min-1.

In Fig. 7, we have plotted the evolution of the trans-

formation rate, which was obtained directly from the first

time derivative of the TG signal normalized to the total

mass change. To check the reliability of the isoconver-

sional analysis, we have plotted, in Fig. 7, the non-iso-

thermal prediction delivered by Eqs. 9 and 11. There is a

good agreement between both the predictions and the

actual evolution.

Isothermal measurements are limited by the difficulty of

reaching a given temperature while avoiding the partial

transformation of the sample. An initial fast heating rate or

introducing the sample when the furnace has reached the

selected temperature may result in significant instabilities

at the beginning of the isothermal measurement, while a

slow heating rate may result in a significant initial degree

of transformation. At this point, it is better to use a mod-

erate initial heating rate and a non-isothermal prediction to

account for the transformation that takes place during the

constant heating rate stage. In Fig. 8, we have used a solid

line to show the evolution of the transformed fraction for a

temperature program that consists of heating the sample

from room temperature up to 700 �C at 10 K min-1 fol-

lowed by an isotherm at 700 �C. It is noticed that the

thermal instability at the beginning of the isothermal

regime is practically negligible, as can be seen by the

evolution of the measured temperature (dashed line).

Conversely, the evolution predicted by the isothermal

methods, Eqs. 6, 8, and 9, exhibits a time shift related to

the transformation that takes place during the constant

heating rate stage. Furthermore, the non-isothermal meth-

ods deliver a significantly more accurate prediction. This

means that, in general, the transformation that takes place

before the isothermal period is reached and cannot be

neglected.

Conclusions

In this study, we have reviewed the most accurate isothermal

model-free prediction methods, i.e., those by Vyazovkin
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Fig. 7 Solid line: Evolution of the transformed fraction (a) and the

transformation rate (b) for the thermal decomposition of CaCO3

measured by TG at several heating rates, b. Symbols: Non-isothermal

predictions (for the sake of clarity only one out of every 60 to 20

points is plotted depending on the heating rate)

Fig. 8 Solid line: Evolution of the transformed fraction for the

thermal decomposition of CaCO3 measured by TG when the sample is

heated up to 700 �C at 10 K min-1 and then is held at 700 �C for 1 h.

Symbols: Isothermal and non-isothermal predictions (for the sake of

clarity only one out of every 50 points is plotted). Dashed line:

experimental evolution of the sample temperature. Dotted line: Onset

of the isothermal period
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[25] and Roduit et al. [12]. The method of Roduit et al. is

exact within the isoconversional hypothesis, while

Vyazovkin’s method assumes constant activation energy

during integration. We have transformed Vyazovkin’s

method into an exact method by introducing finite differ-

ences. In addition, the use of finite differences simplifies the

generalization of this method so that it holds under an

arbitrary temperature program. Since the method of Roduit

et al. is also based on finite differences, its generalization to

non-isothermal conditions is straightforward.

Non-isothermal predictions are useful for designing

more versatile thermal treatments, for working in more

realistic conditions, and for extending the use of isothermal

analysis. In addition, non-isothermal predictions provide an

easy way to check the goodness of the isoconversional

hypothesis: experimental data obtained under a constant

heating rate can be compared with the predicted evolution

for the same temperature program.

We have stated that the intrinsic inaccuracies of the

method of Roduit et al. results in a time shift for those

transformations where the transformation rate vanishes at

the very first stages under isothermal conditions (sigmoid

transformations). However, in many practical situations,

this inaccuracy is insignificant, i.e., the method of Roduit

et al. delivers virtually the same prediction.

Finally, in the case of complex transformations, the

differences between the Vyazovkin’s method and the exact

methods are minimal. Therefore, when the isoconversional

hypothesis is an approximation, the inaccuracy of the

Vyazovkin method within the isoconversional hypothesis is

practically irrelevant [26].
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